Stat 512 — Take home exam III (due on July 22nd)

1. If
$$Y \sim F_{v_1, v_2}$$
, then prove: $\frac{\left(\frac{v_1}{v_2}\right)Y}{1 + \left(\frac{v_1}{v_2}\right)Y} \sim Beta(\frac{v_1}{2}, \frac{v_2}{2}).$ (10 pts)

- 2. Assume now that the amount of fill dispensed by the bottling machine is exponentially distributed with $\beta = 2$, that is $Y_1, \ldots, Y_n \sim Exp(2)$.
 - a. What is the asymptotic distribution of \overline{Y} when n = 3? Using R or standard normal table to find out $P|\overline{Y}-2| \leq 3$. (10 pts) (Hint: Assume CLT is appropriate here; asymptotic distribution means the limiting distribution, that is, the distribution when $n \to \infty$).
 - b. Obtain the exact distribution of \overline{Y} using MGF technique. Is this a common distribution that you've seen before? (10 pts)
- The flow of water through soil depends on, among other things, the porosity (volume proportion of voids) of the soil. To compare two types of sandy soil, n₁ = 50 measurements are to be taken on the porosity of soil A and n₂ = 100 measurements are to be taken on the porosity of soil B. Assume that σ₁² = 0.01 and σ₂² = 0.02.
 Population means for the two types of soil are μ₁, μ₂. Denote the samples for the soil A be X₁,..., X₅₀, the samples for the soil B be Y₁,..., Y₁₀₀.
 - a. What is the asymptotic distribution for $\bar{X} \bar{Y}$? (10 pts)
 - b. What is the probability that sample variance of soil A is at least twice as large as the sample variance of soil B? (Use R to help you find the answer. The command is: pf(q,df1,df2), for more details; type ?pf in R) (10 pts)
- 4. Suppose Y follows a binomial distribution with parameter n and p, then $\frac{Y}{n}$ is an unbiased estimator of p. Now, we want to estimate the variance of Y which is np(1-p), we proposed a new estimator: $\hat{p} = n\left(\frac{Y}{n}\right)\left(1-\frac{Y}{n}\right)$.
 - a. Show that \hat{p} is biased for the variance of Y. (10 pts)
 - b. Adjust the estimator so that the new estimator is an unbiased estimator of np(1-p). Hint: "Adjust"

means you need to find a function of \hat{p} such that the new function is unbiased. Remember that an estimator cannot involve unknown parameters. (10 pts)

- 5. Suppose that Y_1, \ldots, Y_n denote a random sample of size *n* from a population with an exponential distribution $exp(\beta)$. $Y_{(1)} = min(Y_1, \ldots, Y_n)$ denotes the smallest-order statistic.
 - a. Show that $\hat{\beta}_1 = nY_{(1)}$ is an unbiased estimator for β . (10 pts)
 - b. Show that $\hat{\beta}_2 = \bar{Y}$ is also an unbiased estimator for β . (10 pts)
 - c. Compare the variance of the two estimators. (10 pts)
- Extra credit: Y_1, \ldots, Y_n are i.i.d. from $U(\theta, \theta + 1)$. Define $\hat{\theta}_1 = Y_{(1)}$. Adjust $\hat{\theta}_1$ so that it becomes an unbiased estimator for θ and compute the associated variance for the adjusted estimator. (10 pts)